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ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it's better than the highest, then replace the highest.
y(ihi)=ytry
do 12 j=1,ndim
psum(j)=psum(j)-p(ihi, j)+ptry(j)
p(ihi, j)=ptry(j)
enddo 12
endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:
Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-313. [1]
Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391-398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’'s) Methods in
Multidimensions

We know §10.1-810.3) how to minimize a function of one variable. If we
start at a poinP in N-dimensional space, and proceed from there in some vector
directionn, then any function ofV variablesf(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensiona
minimization methods that consist of sequences of such line minimizations. Differen
methods will differ only by how, at each stage, they choose the next direttion
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might calllinmin (given as an explicit routine at the end of this section), whose

definition can be taken for now as

linmin: Given as input the vectoi® andn, and the
function £, find the scalai that minimizesf (P+ An).
ReplaceP by P + An. Replacen by An. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routingnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
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computation of the function’s gradient; the next two sections do require such gradient

calculations. You will note that we need not specify whethiaimin uses gradient
information or not. That choice is up to you, and its optimization depends on your

particular function. You would be crazy, however, to use gradienisimin and

not use them in the choice of directions, since in this latter role they can drastically

reduce the total computational burden.
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10.5 Direction Set (Powell's) Methods in Multidimensions 407

start

Figure 10.5.1. Successive minimizations along coordinate directions in along, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

But what if, in your application, cal culation of the gradient is out of the question.
You might first think of this simple method: Take the unit vectorse;, ey, ...ey as
a set of directions. Using 1inmin, move along the first direction to its minimum,
then from there along the second direction to its minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the function
stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basi s vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, in N dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through all N basis vectors will be required in
order to get anywhere. This conditionis not all that unusual; according to Murphy’s
Law, you should count on it.

Obvioudly what we need is a better set of directionsthan thee;’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very
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408 Chapter 10.  Minimization or Maximization of Functions

good directions that will take us far along narrow valleys, or else (more subtly)
(i1) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called con-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then the
gradient of the function must be perpendicular to u at the line minimum; if not, then
there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

- of 1 82 f
fx) = f(P) +Z€)_xixl+ 52 axia%iﬂz% +
i (105.1)
~c—b-x4+ =x-A-X
where
_fP) b= Vi (A= (1052)
€= o P K (i)l'l(r“)l‘] P -

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P.
In the approximation of (10.5.1), the gradient of f is easily calculated as

Vf=A-x—b (105.3)

(Thisimpliesthat the gradient will vanish — the function will be at an extremum —
at avalue of x obtained by solving A - x = b. Thisideawe will returnto in §10.7!)
How doesthe gradient V f change aswe move a ong some direction? Evidently

S(Vf) = A (6x) (10.5.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v not
spoil our minimization along u is just that the gradient stay perpendicular to u, i.e.,
that the change in the gradient be perpendicular to u. By equation (10.5.4) thisisjust

0=u-6(Vf)=u-A-v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’'t need to redo any of those directions

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



10.5 Direction Set (Powell's) Methods in Multidimensions 409

(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass of N line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won't be exactly at the minimum; but
repeated cycles of V line minimizations will in due course converge quadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes: Initialize the set of directions u; to
the basis vectors,

u, =€ i=1,...,N (10.5.6)

Now repeat the following sequence of steps (“basic procedure”) until your function
stops decreasing:

e Save your starting position as Py.

e Fori =1,...,N, move P;,_; to the minimum aong direction u; and
cal this point P;.

Fori=1,...,N — 1, set u; «— Ujtq.

Set uy «— Py — Po.

Move Py to the minimum along direction u 5 and call this point Py.

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations
of the above basic procedure produce a set of directions u; whose last k¥ members
are mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in al, will exactly minimize a quadratic form.
Brent [1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage, u; in favor of Py — Py
tends to produce sets of directions that “fold up on each other” and become linearly
dependent. Once this happens, then the procedure finds the minimum of the function
f only over a subspace of the full N-dimensional case; in other words, it gives the
wrong answer. Therefore, the algorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s algorithm, among them:

1. You canreinitialize the set of directionsu; to the basis vectors e; after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commendto you if quadratic convergenceisimportant for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions aready built up, he resets the direction set to calculated
principal directions of the matrix A (which he gives a procedure for determining).
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410 Chapter 10.  Minimization or Maximization of Functions

The calculation is essentially a singular value decomposition algorithm (see §2.6).
Brent has a number of other cute tricks up his sleeve, and his modification of
Powell’s method is probably the best presently known. Consult [1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead of N necessarily conjugate directions. This is the method
that we now implement. (It isalso the version of Powell’s method givenin Acton [2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
guadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of a valley floor that twists one way and another (and
another, and another, ... — there are N dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn't (yet) there; while the conjugacy of the N — 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, amethod with quadratic convergence can save us several times
N? extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take P 5y — Py as
anew direction; itis, after all, the average direction moved after trying all N possible
directions. For a valley whose long direction is twisting slowly, this direction is
likely to give us a good run along the new long direction. The changeis to discard
the old direction along which the function f made its largest decrease. This seems
paradoxical, since that direction was the best of the previous iteration. However, it
is aso likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not
to add a new direction at al. Define

fo=f(Po)  fn=f(Px)  fe=f(2Py—P) (105.7)

Here fg is the function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define Af to be the magnitude of the largest
decrease along one particular direction of the present basic procedureiteration. (A f
is a positive number.) Then:

1. If fg > fo, then keep the old set of directions for the next basic procedure,
because the average direction Py — Py is al played out.

2.2 (fo—2fn+ fr) [(fo— fn) = Af]* > (fo— fr)*Af, thenkeeptheold
set of directions for the next basic procedure, because either (i) the decrease along
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10.5 Direction Set (Powell's) Methods in Multidimensions 411

the average direction was not primarily due to any single direction’s decrease, or (ii)
there is a substantial second derivative along the average direction and we seem to
be near to the bottom of its minimum.

Thefollowing routineimplements PowelI’s method in the version just described.
Intheroutineg, xi isthe matrix whose columns are the set of directionsn ;; otherwise
the correspondence of notation should be self-evident.

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)

INTEGER iter,n,np,NMAX,ITMAX

REAL fret,ftol,p(np),xi(np,np),func,TINY

EXTERNAL func

PARAMETER (NMAX=20,ITMAX=200,TINY=1.e-25)

USES func, |inmn
Minimization of a function func of n variables. (func is not an argument, it is a fixed func-
tion name.) Input consists of an initial starting point p(1:n); an initial matrixxi(1:n,1:n)
with physical dimensions np by np, and whose columns contain the initial set of directions
(usually the n unit vectors); and ftol, the fractional tolerance in the function value such
that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, xi is the then-current direction set, fret is the
returned function value at p, and iter is the number of iterations taken. The routine
linmin is used.
Parameters: Maximum value of n, maximum allowed iterations, and a small nhumber.

INTEGER 1i,ibig, j

REAL del,fp,fptt,t,pt(NMAX),ptt(NMAX),xit (NMAX)

fret=func(p)

dou j=1,n Save the initial point.
pt(§)=p(j)
enddo 11
iter=0
iter=iter+1
fp=fret
ibig=0
del=0. Will be the biggest function decrease.
do13 i=1,n In each iteration, loop over all directions in the set.
do12 j=1,n Copy the direction,
xit(§j)=xi(j,1)
enddo 12
fptt=fret
call linmin(p,xit,n,fret) minimize along it,
if (fptt-fret.gt.del)then and record it if it is the largest decrease so far.
del=fptt-fret
ibig=i
endif
enddo 13

if (2.x(fp-fret) .le.ftol*(abs(fp)+abs(fret))+TINY)return Termination criterion.
if (iter.eq.ITMAX) pause ’powell exceeding maximum iterations’

do 14 j=1,n Construct the extrapolated point and the average di-
ptt(§)=2.*%p(§)-pt(j) rection moved. Save the old starting point.
xit(§)=p(j)-pt(j)
pt(§)=p(j)

enddo 14

fptt=func(ptt) Function value at extrapolated point.

if (fptt.ge.fp)goto 1 One reason not to use new direction.

t=2.%(fp-2.*fret+fptt) * (fp-fret-del) **2-delx* (fp-fptt) **2

if(t.ge.0.)goto 1 Other reason not to use new direction.

call linmin(p,xit,n,fret) Move to the minimum of the new direction,

do1s j=1,n and save the new direction.

xi(j,ibig)=xi(j,n)

xi(j,n)=xit(j)
enddo 15
goto 1 Back for another iteration.
END
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412 Chapter 10.  Minimization or Maximization of Functions

Implementation of Line Minimization

Inthe aboveroutine, you might have wondered why we didn’t make the function
name func an argument of the routine. The reason is buried in a dightly dirty
FORTRAN practicality in our implementation of 1inmin.

Make no mistake, there is a right way to implement linmin: It is to use
the methods of one-dimensional minimization described in §10.1-510.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued points P (al lying aong a given direction n) rather than scalar-valued
abscissas x. That straightforward task produces long routines densely populated
with “do k=1,n" loops.

We do not have space to include such routinesin thisbook. Our 1inmin, which
worksjust fine, isinstead a kind of bookkeeping swindle. It constructsan “artificial”
function of one variable called f1dim, which is the value of your function func
along the line going through the point p in the direction xi. 1inmin communicates
with f1dim through a common block. It then calls our familiar one-dimensional
routinesmnbrak (§10.1) and brent (§10.2) and instructs them to minimize f 1dim.

Still following? Then try this: brent receivesthe function name £ 1dim, which
it dutifully calls. But thereisnoway to signal to f1dim that it is supposed to use your
function name, which could have been passed to 1inmin as an argument. Therefore,
we have to make f1dim use a fixed function name, namely func. The situation is
reminiscent of Henry Ford's black automobile: powell will minimize any function,
as long as it is named func. Needed to remedy this situation is a way to pass a
function name through a common block; thisis lacking in FORTRAN.

Theonly thinginefficient about 1inmin isthis: Itsuse asan interface betweena
multidimensional minimization strategy and a one-dimensional minimization routine
results in some unnecessary copying of vectors hither and yon. That should not
normally be a significant addition to the overall computational burden, but we cannot
disguise its inelegance.

SUBROUTINE linmin(p,xi,n,fret)

INTEGER n,NMAX

REAL fret,p(n),xi(n),TOL

PARAMETER (NMAX=50,TOL=1.e-4) Maximum anticipated n, and TOL passed to brent.

USES brent, f1di m mbr ak
Given an n-dimensional point p(1:n) and an n-dimensional direction xi(1:n), moves and
resets p to where the function func(p) takes on a minimum along the direction xi from
P, and replaces xi by the actual vector displacement that p was moved. Also returns as
fret the value of func at the returned location p. This is actually all accomplished by
calling the routines mnbrak and brent.

INTEGER j,ncom

REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX) ,xicom(NMAX) ,brent

COMMON /ficom/ pcom,xicom,ncom

EXTERNAL fidim

ncom=n Set up the common block.

dou j=1,n
peom(j)=p(j)
xicom(j)=xi(j)

enddo 11

ax=0. Initial guess for brackets.

xx=1.

call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)

fret=brent (ax,xx,bx,f1dim,TOL,xmin)

do 12 j=1,n Construct the vector results to return.
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10.6 Conjugate Gradient Methods in Multidimensions 413

xi(j)=xminx*xi(j)
p()=p(G)+xi(j)
enddo 12
return
END

FUNCTION fidim(x)
INTEGER NMAX
REAL fidim,func,x
PARAMETER (NMAX=50)
USES func
Used by 1linmin as the function passed to mnbrak and brent.
INTEGER j,ncom
REAL pcom(NMAX) ,xicom(NMAX) ,xt (NMAX)
COMMON /ficom/ pcom,xicom,ncom
do 11 j=1,ncom
xt (j)=pcom(j)+x*xicom(j)
enddo 11
fidim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464-467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259-262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, a a given N-
dimensional point P, not just the value of a function f(P) but aso the gradient
(vector of first partial derivatives) V f(P).

A rough counting argument will show how advantageousit isto use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x)zc—b-x+%x-A-x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is N(N + 1), which we see to be of order N2
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order V2 numbers.
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